

Significance and mechanism of dielectric capacitors

Dielectric capacitors are energy storage typically used for storing electrical energy. It exhibits the fastest charge-discharge mechanism (high powder density) among all energy storage systems. However, its application is limited due to its relatively lower energy storage density capacity.

enhancing the electric breakdown strength (E_b) .

In this research group, we aim to optimize a relaxor ferroelectric (RFE) dielectric material via domain engineering, dopant introduction, and configuration entropy.

Random *E* fields

 $\geq \mathbf{E}$

10⁰

10-2

10⁻¹

The optimized dielectric material is fabricated into multilayer ceramic capacitor (MLCC) chips for actual device application. MLCC allows further improvement of the energy storage properties of the dielectric capacitor, enhancing the overall performance.

Publications

- ➢ Ultrahigh energy storage in multilayer BiFeO₃−BaTiO₃−NaTaO₃ relaxor ferroelectric ceramics. *Journal of Materials Chemistry A*, *12*(44), 30642-30654.
- Configuration-entropy effects on BiFeO₃-BaTiO₃ relaxor ferroelectric ceramics for high-density energy storage. *Journal of Materials Chemistry A*, *12*(20), 11995-12008.
 Achieving superb electric energy storage in relaxor ferroelectric BiFeO₃-BaTiO₃-NaNbO₃ ceramics via O₂ atmosphere. *Journal of the European Ceramic Society*, *43*(16), 7446-7454.
- Tailoring energy storage in Nb2O5-added 0.7BiFeO₃-0.3BaTiO₃ ceramics via A-site Gd³⁺ substitution. *Journal of Alloys and Compounds*, 963, 171144.
- Optimizing energy storage under low electric field in A-site dysprosium modified BiFeO₃-BaTiO₃ ceramics. *Journal of Alloys and Compounds*, 983, 173918.