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Chapter 1

Coordinate system

1.1 Coordinate and coordinate system

A coordinate is a number that determines the location of a point along some line or curve.
A list of two or three coordinates can be used to determine the location of a point on a
surface or in a volume. More coordinates are required to specify the location of a point
in higher-dimensional domain.

A two- and three-dimensional coordinate system is a system for assigning a 2- and
3-tuple of numbers or scalars to each point in a two- and three-dimensional space, respec-
tively. An n-tuple of numbers is used to denote a point in an n-dimensional space.

1.2 Cartesian coordinate system

Cartesian coordinate system (also called rectangular coordinate system) is a rectilinear
two- or three-dimensional coordinate system. The three axes of three-dimensional Carte-
sian coordinates, conventionally denoted as the x-, y-, and z-axes are chosen to be linear
and mutually perpendicular and intersect at the origin. In three dimensions, the coordi-
nates x, y, and z may lie anywhere in the interval (−∞,∞).
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2 Coordinate system

Ex: Find the coordinates of the following four points.

Ex: (a) Find the distance between two points P1(x1, y1, z1) and P2(x2, y2, z2). (b) De-
termine the equation of a straight line passing through two distinct points P3(x3, y3) and
P4(x4, y4). What is the slope of the line?

1.3 Polar coordinate system

The polar coordinate system is a two-dimensional coordinate system in which each point
on a plane is determined by a distance from a fixed point (e.g., the origin) and an angle
from a fixed direction (e.g., the +x-axis). The angle θ, often called the polar angle, is
measured counterclockwise from the fixed axis.

The polar coordinates r and θ are defined in terms of Cartesian coordinates by

{ x = r cos θ
y = r sin θ.

1.4 Coordinate transformation

A coordinate transformation is a conversion from one coordinate system to another, to
describe the same space. For example, the coordinate transformation for the coordinate
system, (x′, y′), which rotates the x- and y-axes with an angle θ in a counterclockwise
direction when looking towards the origin is given by



1.5 Physical significance 3

{ x
′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ.

In terms of matrix, it can be written as

( x′

y′
) = ( cos θ sin θ

− sin θ cos θ
)( x

y
) .

Ex. Find the coordinate transformation for x and y in terms of x′ and y′ for the previous
example.
Ex. Find the coordinate transformation between the polar coordinates and the two-
dimensional Cartesian coordinates. (See Sec.1.3.)

1.5 Physical significance

Coordinate transformation is very useful in physics, especially for two distinct observers
to describe an identical event, when they are communicating with each other. With
respect to different frames of reference, the event may have different temporal and spatial
coordinates. Since the event is identical, the coordinates acquired by the two observers
must be related to one another. It is the coordinate transformation that gives explicitly
the mathematical relationship between these two seemingly distinguishable coordinates.
For example, the final match of World Cup 2010, Netherlands vs Spain, kicked off at the
Soccer City Stadium in Johannesburg, South Africa, at 2000 on July 11, 2010. Here in
Taiwan, it was about 11.5 × 103 km at an angle 28.7○ south of west (SOW) from Taipei.
Accordingly, we may denote the event taken place by coordinatesRt = (−10,−5.5)×103 km
with respect to Taipei at Tt = 0200 on July 12, 2010. On the other hand, Mr. C. M. Wang,
who was in Washington DC, would describe it as Rw = (11,−6.9) × 103 km with respect
to him at Tw = 1400 on July 11, 2010. The relation between the two coordinates can be
written by Rt =Rw + (−21,1.4) × 103 km and Tt = Tw + 1200. It is worth to note that this
example delivers primarily the idea of coordinate transformation except that the spherical
nature of the globe has not been correctly taken into consideration.





Chapter 2

Vector

2.1 Definition

A vector is a geometric object that is specified by both a magnitude and a direction in
space. A 3-dimensional vector is represented by 3 coordinates.

1. In the Cartesian coordinate system, it can be expressed componentwise as A =
⎛
⎜
⎝

A1

A2

A3

⎞
⎟
⎠
or in terms of unit vectors as A = A1 î +A2 ĵ +A3 k̂.1

2. When written out componentwise, the notation r generally refers to r =
⎛
⎜
⎝

r1
r2
r3

⎞
⎟
⎠
. On

the other hand, when written with a subscript, the notation r1 generally refers to

r1 =
⎛
⎜
⎝

x1

y1
z1

⎞
⎟
⎠
.

3. The length (magnitude) of a vector is denoted as A = ∣A∣ and defined by ∣A∣ =√
A2

1 +A2
2 +A2

3.

1For unit vectors, see Sec. 2.3.
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6 Vector

4. Vector equality: two vectors are equal, A = B, if and only if A = B and θA = θB.

2.2 Bases and representations2

A basis for an n-dimensional vector space is a set of n linearly independent vectors that
every vector in the given vector space can can be expressed uniquely as a linear combi-
nation of the basis vectors, and that no element of the set can be represented as a linear
combination of the others. The choice of a basis for an n-dimensional vector space is,
however, unlimited. Nevertheless, there are always the same number of basis vectors in
each of them. Moreover, two linearly independent bases are related to each other by a
linear transformation.

For example, two sets of vectors A = {a1,a2} with a1 = (
1
0
) and a2 = (

0
1
) and

B = {b1,b2} with b1 = (
1
1
) and b2 = (

−2
1
) can be used as bases for the 2-dimensional

vector space. Then, the vector v is expressed in terms of bases A and B as v = ( −1
5
)
A

and ( 3
2
)
B

, respectively. The former, ( −1
5
)
A

, is the representation of the vector v in

basis A and the latter, ( 3
2
)
B

, the representation of v in basis B.

As mentioned previously, the change of basis from B to A can be performed by a

2Formal treatment of basis transformation will be given in the course of “Matrices and Vectors”.
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linear transformation. It is easy to show that

( b1

b2
) = ( 1 1

−2 1
)( a1

a2
) .

Consequently, the representations of the vector v in the two bases are related by

( −1
5
)
A

= ( 1 −2
1 1

)( 3
2
)
B

.

Ex. (a) Find the linear transformation for the change of basis from A to B. (b) Find the

matrix M such that ( 3
2
)
B

=M ( −1
5
)
A

.

Ex. For an arbitrary vector u, can you find the relation between the two representations

( ux

uy
)
B

=M ( u′x
u′y
)
A

, ie., find the matrix M?

Ex. Find the representation of v in terms of the basis C = {c1,c2} with c1 = (
1
−1 ) and

c2 = (
1
1
).

Ex. Can the two vectors d1 = (
1
−1 ) and d2 = (

−1
1
) form a basis? Explain.

2.3 Unit vector

A unit vector is a vector of length 1 (the unit length) and defined by r̂ = r

∣r∣
. In the

three-dimensional Cartesian coordinate system, the unit vectors co-directional with the

x, y, and z axes are given by î =
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
, ĵ =

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
, k̂ =

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
, respectively.

Ex. Find the unit vector of v =
⎛
⎜
⎝

3
4
5

⎞
⎟
⎠
.



8 Vector

Ex. Find the unit vectors r̂ and θ̂ for the polar coordinate system.

2.4 Scalar (dot) product

The scalar product, also known as the dot product or the inner product, is an operation
of mapping two vectors onto a real-valued scalar quantity.

1. The dot product of two vectors A and B is defined as A ⋅B = AB cos θ = B ⋅A,
where θ is the angle between the vectors.

2. The length of a vector can then be determined by ∣A∣ =
√
A ⋅A.

3. Accordingly, the dot product of two vectors can be given by

A ⋅B =ATB = (A1,A2,A3)
⎛
⎜
⎝

B1

B2

B3

⎞
⎟
⎠
= A1B1 +A2B2 +A3B3.

4. Geometric interpretation

B cos θ is the scalar projection of B onto A, whereas A cos θ is the scalar projection
of A onto B.

5. It follows immediately that A1 = î ⋅A, A2 = ĵ ⋅A, and A3 = k̂ ⋅A.

6. Orthogonality: two non-zero vectors A and B are said to be orthogonal (perpen-
dicular to each other) if and only if A ⋅B = 0.

Ex. Show that î ⋅ î = 1 = ĵ ⋅ ĵ = k̂ ⋅ k̂ and î ⋅ ĵ = 0 = î ⋅ k̂ = ĵ ⋅ k̂.
Ex. Are the unit vectors of polar coordinate system orthogonal?
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2.5 Vector (cross) product

The vector product, also known as the cross product, is a binary operation of mapping
two vectors in a three-dimensional Euclidean space that results in another vector which
is perpendicular to the plane containing the two input vectors.

1. The cross product of two vectors ofA andB is defined asA×B = AB sin θ n̂ = −B×A,
where θ is the angle between the vectors measured from A to B. n̂ is a unit vector
normal to the plane containing A and B given by the right hand rule as illustrated
in the figure.
Ex. Show that (a) î × î = 0 = ĵ × ĵ = k̂ × k̂; (b) î × ĵ = k̂, ĵ × k̂ = î, and k̂ × î = ĵ.

2. It is straightforward to calculate the cross product of two 3-dimensional vectors A
and B in terms of their components and found that forC =A×B, Cx = AyBz−AzBy,
Cy = AzBx − AxBz, and Cz = AxBy − AyBx. These can be written in a shorthand
notation that takes the form of a determinant

C =A×B =
RRRRRRRRRRRRRR

î ĵ k̂
Ax Ay Az

Bx By Bz

RRRRRRRRRRRRRR
= î(AyBz −AzBy)+ ĵ(AzBx −AxBz)+ k̂(AxBy −AyBx).

3. Geometric interpretation:

(a) The area of a parallelogram with adjacent side lengths of A and B can be
determined by ∣A ×B∣.

-�
�
�
�
��

�
�
�
�
�

A

B

(b) The area of a triangle with two adjacent side lengths of A and B can be
obtained from 1

2 ∣A ×B∣.

-

Q
Q
Q
Q

Q
Q
QQ�

�
�
�
��

A

B
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Ex. A farmhouse consists of two wings connected at right angle as shown in the figure.
The side view of left wing can be regarded as an isosceles triangle with isosceles angle
α = 60○ atop a rectangle, whereas that of the right wing as an isosceles triangle with
isosceles angle β = 45○ upon a rectangle. For a house renovation, it requires a replacement
of the valley flashing. To do this, it is necessary to make a wedge-shaped timber. Estimate
the top angle of the timber.

2.6 Physical significance

Many physical quantities exhibit characteristics of a vector. For instance, the quantity
displacement that we shall encounter very soon in the class, representing the change in
position, is a vector. It depends only on the initial and final positions, not the path taken.
Vector components vary with the change of coordinate axes, however, the magnitude as
well as the direction of the vector remains unchanged. Therefore, vector equation retains
its form regardless of coordinate system. This reflects the fact that physical laws are
coordinate system independent.



Chapter 3

Functions

3.1 Definition

A function is a mapping of members of one set into members of another set. The notation
f ∶ A ↦ B from A to B is a function f such that for every a ∈ A, there is an object
f(a) ∈ B. A slightly different notation f ∶ x → f(x) specifies that f is a function acting
upon a number x and returning a value f(x).

Consider a function f(x) = 3

x2 + 1
. Complete the following table using your calculator.

x -10 -5 -2.5 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.5 5 10
f(x)

Ex. (a) Use these data to plot f(x) versus x. (b) What is the maximum value of f(x)?
(c) What is the value of x corresponding to the maximum? (d) As ∣x∣ becoming large,
how can you depict the behavior of f(x)?

Quite often, if not always, plotting a function in dependence of the variable is quite
helpful. It enables us to get an idea about the behavior of the function.

3.2 Polynomial

A polynomial is a mathematical expression involving a sum of non-negative whole number
exponents in one or more variables multiplied by coefficients. A one variable polynomial
is given by anxn+⋯+a2x2+a1x+a0. The highest power in a single variable polynomial is
called its order, or sometimes its degree. The polynomial of degree n can be abbreviated

with the summation
n

∑
r=0

arx
r.

Ex. Which of the followings are not polynomials? (a) x2 +x−x1/2 + 2; (b) 2x2 − 3
x + 1; (c)

3x2 − 2x + 3; (d) 2x − x + 1.
11



12 Functions

3.3 Trigonometric functions

The six trigonometric functions of sine (sinx), cosine (cosx), tangent (tanx), cotangent
(cotx), cosecant (cscx), and secant (secx) are well known and among the most frequently
used elementary functions. In fact, only sinx and cosx need to be defined, the other four
can be derived from the sine and cosine functions.

1. For θ being an angle measured counterclockwise from the x-axis along an arc of
the unit circle, then sin θ and cos θ are, respectively, the vertical and the horizontal
coordinates of the arc endpoint, as illustrated in the left figure below. These extend
the schoolbook definitions of the sine and cosine of an angle θ ∈ [0, π/2] to θ ∈ R.

2. The other four trigonometric functions are defined as:

tan θ = sin θ

cos θ

cot θ = cos θ

sin θ
= 1

tan θ

sec θ = 1

cos θ

csc θ = 1

sin θ

3. Useful identities:

(a) sin(−θ) = − sin θ, cos(−θ) = cos θ

(b) sin2 θ + cos2 θ = 1

(c) 1 + tan2 θ = sec2 θ

(d) cos(α − β) = cosα cosβ + sinα sinβ

(e) sin(α + β) = sinα cosβ + cosα sinβ
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3.4 Exponential function

The exponential function defined as exp(x) = ex, where e = 2.71828182846 . . ., is the unique

solution to the differential equation
df(x)
dx

= f(x) with the initial condition f(0) = 1.1

Below list some useful properties of ex:

1. ex+y = exey

2. In virtue of the Euler formula eiθ = cos θ + i sin θ with i =
√
−1 the exponential

function relates to the trigonometric functions as the following

(i) cos θ = eiθ + e−iθ
2

and

(ii) sin θ = eiθ − e−iθ
2i

.

These extend further the trigonometric functions for complex arguments, i.e., θ ∈ C.
As a result, one can easily show

(i) cos(iy) = ey + e−y
2

= cosh y

(ii) sin(iy) = −e
y − e−y
2i

= i sinh y

3. The limit definition of the exponential function is given by

ex = lim
n→∞
(1 + x

n
)
n

for any x ∈ R.

Details on this approach will be discuss in the Calculus course.

3.5 Logarithm function

The logarithm function y = f(x) = loga x for a base a > 0 (a ≠ 1) and a number x is
defined to be the inverse function of the exponential function, i.e., x = f−1(y) = ay. More
explicitly, the logarithm of a number (x) to a given base (a) is the power or exponent
(y) to which the base must be raised in order to produce the number. For example, the
logarithm of 100 to base 10 is 2, since 102 = 100, and the logarithm of 32 to base 2 is
5 because 25 = 32. Consequently, for any x and a > 0 it give rise to x = loga(ax), or
equivalently, x = aloga x.

The function loga x depends on both a and x, but the term logarithm function in
standard usage refers to a function of the form loga x in which the base a is fixed and so
the only argument is x. Apparently, loga x is a monotonic function of x. It is increasing
if a > 1 and decreasing if a < 1 as shown in the following figures.

1For the derivative of a function, see Sec. 5.2.1.
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If the base of the logarithm function is chosen as 10, it is called the common loga-
rithm and denoted by logx = log10 x. On the other hand, the logarithm function to base
“e” is called the natural logarithm and denoted by lnx = loge x.

Below are some useful relations.

1. Logarithmic identities
(a) loga(xy) = loga x + loga y cf. (ax)(ay) = ax+y
(b) loga(x/y) = loga x − loga y cf. ax/ay = ax−y
(c) loga x

y = y loga x cf. (ax)y = axy
(d) loga

y
√
x = 1

y loga x cf. y
√
ax = ax/y

2. Change of base

loga x =
logb x

logb a



Chapter 4

Limit

4.1 Examples

(1a) Consider f(x) = x

x2 + 1
as x approaches 2. Complete the following table using your

calculator.

f(1.9) f(1.99) f(1.999) f(1.9999) f(2) f(2.0001) f(2.001) f(2.01) f(2.1)

As you might guess from the example, as x approaches the value of 2 from above or
below, the value of the function f(x) approaches the value of f(2) = 0.4. In the case, we
can say that f(x) have a limit of 0.4 as x is made very close to 2.

(1b) Find the value of ϵ, such that ∣f(x) − 0.4∣ < 0.01 for x ∈ [2 − ϵ,2 + ϵ].

(1c) Find the value of ϵ, such that ∣f(x) − 0.4∣ < 0.0001 for x ∈ [2 − ϵ,2 + ϵ].

(2a) Consider g(x) = x2 − 4√
x2 − 2

as x approaches 2. Complete the following table using your

calculator.

g(1.9) g(1.99) g(1.999) g(1.9999) g(2) g(2.0001) g(2.001) g(2.01) g(2.1)

(2b) What happens to g(x) near x = 2? Does the function approach the same value as
x approaches 2 from above or below? Make a detailed sketch of the function g(x) for
x ∈ [−5,5].

(3) Consider h(x) = sinx

x
as x approaches 0 by sketching the graph of h(x) in the vicinity

of x = 0. Note that the function h(x) is undefined for x = 0.

15



16 Limit

4.2 Formal definition

Suppose f(x) is a real-valued function and p is a real number. A function f(x) is said to
have a limit

lim
x→p
= L,

if, for any ϵ > 0, there exists a δ > 0 such that ∣f(x) −L∣ < ϵ whenever 0 < ∣x − p∣ < δ. This
form of definition is sometimes called an epsilon-delta definition. Limits may be taken
from below

lim
x→p−

f(x),

or from above
lim
x→p+

f(x).

If the two are equal, then ”the” limit of the function f(x) is said to exist at x = p.

4.2.1 Continuity

In the case where f(c) = lim
x→c

f(x), f is said to be continuous at x = c.
In general, the limit of f(x) as x approaches c is not necessarily equal to f(c).

4.2.2 Useful identities

The following rules are valid if both lim
x→c

f(x) and lim
x→c

g(x) exist

1. lim
x→c
[S ⋅ f(x)] = S ⋅ lim

x→c
f(x) where S is a scalar.

2. lim
x→c

bf(x) = blimx→c f(x) where b is a positive real scalar.
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3. lim
x→c
(f(x) + g(x)) = lim

x→c
f(x) + lim

x→c
g(x)

4. lim
x→c
(f(x) − g(x)) = lim

x→c
f(x) − lim

x→c
g(x)

5. lim
x→c
(f(x) ⋅ g(x)) = lim

x→c
f(x) ⋅ lim

x→c
g(x)

6. lim
x→c

f(x)
g(x)

= limx→c f(x)
limx→c g(x)

Theorem: If f is a polynomial function and a is a real number, then

lim
x→a

f(x) = f(a).

Sandwich theorem: Suppose f(x) ≤ h(x) ≤ g(x) for every x in an open interval
containing a. If lim

x→a
f(x) = L = lim

g→a
g(x), then lim

x→a
h(x) = L.

Theorem: (1) lim
θ→0

sin θ = 0. (2) lim
θ→0

cos θ = 1. (3) lim
θ→0

sin θ

θ
= 1. (4) lim

θ→0

1 − cos θ
θ

= 0.

(In order to give a rigorous proof for (3) and (4), you would need to use the Sandwich
theorem. )

4.3 Exercises

Find the limit, if it exists.

1. lim
s→4

6s − 1
2s − 9

2. lim
x→4−
(x −
√
16 − x2)

3. lim
x→2

√
x −
√
2

x − 2
4. Sketch the graph of the piecewise-defined function f and, for the indicated value of a,
find each limit, if it exists: (a) limx→a− f(x), (b) limx→a+ f(x), (c) limx→a f(x).

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2 if x < 1
2 if x = 1
4 − x2 if x > 1

for a = 1
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5. Prove that lim
θ→0

sin θ

θ
= 1. [Hint: (1) Compare the lengths of AD, BC and the circular

arcÎAB subtending the angle θ. (2) Use the Sandwich theorem. ]

6. Prove that lim
θ→0

1 − cos θ
θ

= 0. [Hint: sin2 θ + cos2 θ = 1]



Chapter 5

Differentiation

5.1 Examples

(1a) Consider f(x) = x

x2 + 1
. Compute h(∆) = (f(x+∆)−f(x))/∆ with x = 2 for various

values of ∆. Complete the following table using your calculator.

h(−0.5) h(−0.1) h(−0.01) h(0.01) h(0.1) h(0.5)

(1b) Plot the function f(x) for the range x ∈ [1.5,2.5].

(1c) Draw the straight lines connecting these pairs of points, (x, f(x)) and (x+∆, f(x+
∆)) for these values of ∆ in the above table. As you should see from your figure, h(∆) gives
the slope of the straight line connecting the two points, (x, f(x)) and (x +∆, f(x +∆)).
What would be your guess for lim

∆→0
h(∆)? What is the meaning of this value?

(2) Carry out the same procedure as the previous problem for the function g(x) = 1

∣x∣ + 1
at x = 0.

5.2 Definitions and properties

Differentiation is a method to compute the rate at which a dependent output, f(x),
changes with respect to the change in the independent input x. This rate of change is
called the derivative of f(x) with respect to x.
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5.2.1 Derivative

Formally, the derivative of a function represents an infinitesimal change in the function
with respect to its variable. The derivative of a single-variable function f(x) with respect
the variable x is defined as

f ′(x) ≡ d

dx
f(x) = lim

∆x→0

f(x +∆x) − f(x)
∆x

.

Note that f ′(x) is another function of x. If the limit exists, then f(x) is differentiable at
x.

f ′(a) gives the slope of the tangent line to the graph of f(a) at the point of x = a.
Therefore, if f ′(a) > 0, the function is increasing in the vicinity of x = a. In contrast, if
f ′(a) < 0, the function is decreasing in the vicinity of x = a. If f ′(a) = 0, the function
has a local maximum or minimum at x = a. A point x0 at which f ′(x0) = 0 is called a
stationary point.

5.2.2 Linear approximation

The tangent line to f(x) at x = a can be written as

h(x) = f(a) + f ′(a)(x − a).

h(x) gives the best linear approximation to the function f(x) in the region near x = a.

f(x) ≈ f(a) + f ′(a)(x − a).

5.2.3 Continuity and differentiability

Note that in order for the limit to exist, both lim∆h→0+ and lim∆h→0− must exist and be
equal, so the function must be continuous. If y = f(x) is differentiable at x = a, then f(x)
is continuous at x = a. However, even if a function is continuous at a point, it may not
be necessarily differentiable there. In summary: in order for a function f(x) to have a
derivative it is necessary for the function f(x) to be continuous, but continuity alone is
not sufficient.
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5.2.4 The derivative as a function

Let f(x) be a function that has a derivative at every point a in the domain of f(x). Recall
that a function is a mapping. Because every point a has a derivative, there is a function
which sends the point a to the derivative of f(x) at x = a. This function is written as
f ′(x) and is called the derivative function or the derivative of f(x). The derivative of
f(x) collects all the derivatives of f(x) at all the points in the domain of f(x).

Sometimes f(x) has a derivative at most, but not all, points of its domain. The
function whose value at x = a equals f ′(a) whenever f ′(a) is defined and is undefined
elsewhere is also called the derivative of f(x). It is still a function, but its domain is
strictly smaller than the domain of f(x).

Consider f(x) = x2.

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

x2 + 2xh + h2 − x2

h
= lim

h→0
(2x + h)

= 2x

Here is another example, consider g(x) = sinx.

g′(x) = lim
h→0

g(x + h) − g(x)
h

= lim
h→0

sinx cosh + cosx sinh − sinx
h

= lim
h→0

sinx(cosh − 1
h

) + lim
h→0

cosx
sinh

h
= cosx

5.2.5 Higher derivative

If the first derivative exists, the second derivative may be defined as

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)
h

= lim
h→0

f(x + 2h) − 2f(x + h) + f(x)
h2

,

provided the second derivative is known to exist.

If f ′′(a) > 0, f ′(x) is an increasing function in the vicinity of x = a.
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5.2.6 Second derivative test

If the function f(x) is twice differentiable at a stationary point x0, meaning that f ′(x0) =
0, then:

• If f ′′(x0) < 0, then f(x) has a local maximum at x0.

• If f ′′(x0) > 0, then f(x) has a local minimum at x0.

• If f ′′(x0) = 0, then the second derivative test says nothing about the point x0, which
can possibly be an inflection point.

5.2.7 Derivatives of elementary functions

Note: you can show these derivatives of elementary functions using the definition of
derivative.

• Derivatives of powers: If f(x) = xr, where r is any real number, then f ′(x) = rxr−1.

• Exponential and logarithmic functions:

1.
d

dx
ex = ex

2.
d

dx
ax = ln(a)ax

3.
d

dx
ln(x) = 1

x
for x > 0

4.
d

dx
loga(x) =

1

x ln(a)

• Trigonometric functions:

1.
d

dx
sin(x) = cos(x)

2.
d

dx
cos(x) = − sin(x)

3.
d

dx
tan(x) = sec2(x)
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5.2.8 Rules for finding the derivatives

Note: you can prove these rules using the definition of derivative.

• Constant rule: If f(x) is constant, then f ′(x) = 0.

• Sum rule: (af + bg)′ = af ′ + bg′ for all functions f and g and real numbers a and b.

• Product rule: (fg)′ = f ′g + fg′ for all functions f and g.

• Quotient rule: (f
g
)
′
= f ′g − fg′

g2
for all functions f and g where g ≠ 0.

• Chain rule: If f(x) = h(g(x)), then f ′(x) = h′(g(x)) ⋅ g′(x).

5.3 Physics intuition

In the case of a particle traveling in a straight line, its position, x, is given by x(t) where
t is time and x(t) means that x is a function of t. The derivative of this function is equal
to the infinitesimal change in quantity, dx, per infinitesimal change in time, dt (of course,
the derivative itself is dependent on time). This change in displacement per change in
time is the velocity v of the particle

dx

dt
= v(t).

5.4 Exercises

Compute the first and second derivatives of the following functions.

1. f(x) = 3x2 − 4x + 1.

2. f(x) = x2

x − 1
+ x.

3. f(x) = 3 sin(x) + 2 cos(x).

4. Let f(x) = { (2x − 1)
3 if x ≥ 2,

5x2 + 34x − 61 if x < 2.
Determine if f(x) is differentiable at x = 2.
5. f(x) = x3 −4x. (a) Find the equation of the tangent line to the graph of f(x) at (2,0).
(b) Find the points on the graph at which the tangent line is horizontal. Can you identify
these points as local maximum or minimum? (c) Sketch the graph of f(x) on the interval
[-10,10].





Chapter 6

Integration

6.1 Example

In the example, we will try to find the area of the region in the xy-plane bounded by the
graph of f(x), the x axis, and the vertical lines x = a and x = b.

(1a) Consider the function f(x) =
√
x. Make a graph of f(x) for x ∈ [0,1].

(1b) Here is a simple way to get an approximation as shown in the figure. First, divide
the range of [0,1] into N equally spaced intervals of width 1

N . The (N + 1) end points of
these N intervals are xi = i

N , for i = 0,2, . . . ,N . One can obtain an approximation for the
area by adding up all these rectangular areas. In this example, if you use the function
value at the right end of each interval, the sum of all rectangular areas will be greater
than the actual area. In contrast, if you use the function value at the left end of each
interval, the sum of all rectangular areas will be smaller than the actual area. So, the true
value of the area should be between these two sums. Use these two methods to obtain the
sum of all rectangular areas for N=5,10,20,50,. . .. (It would be convenient to use EXCEL
for this task!) You should observe that these two sums become closer to each other as N
increase.

(1c) What is your best approximation for the area?

25
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(2a) Given f(x) = x2 + 3x − 1, find a function g(x) such that g′(x) = f(x). g(x) is called
an antiderivative of f(x).

(2b) Can you find other antiderivatives of f(x)?

(2c) Find the antiderivatives of the following functions: sin(x), exp(x), cos(x).

6.2 Definitions and properties

An integral is a mathematical object that can be interpreted as an area or a generalization
of area. Integrals, together with derivatives, are the fundamental objects of calculus.

Given a function f(x) of a real variable x and an interval [a, b] of the real line, the
definite integral

∫
b

a
f(x)dx

is defined informally to be the net signed area of the region in the xy-plane bounded by
the graph of f(x), the x axis, and the vertical lines x = a and x = b. Here, a and b are,
respectively, referred as the upper and lower bounds of the integration. In the region
where f(x) is positive, the signed area defined as positive; in the region where f(x) is
negative, the signed area is negative.

6.2.1 Geometric intuition

Consider the graph of a continuous function y = f(x) as shown in the figure. The signed
area of the region beneath the curve of f(x) between 0 and x is denoted as a function
A(x), although we may not know a ”formula” for the function A(x).

Now suppose we wanted to compute the area under the curve between x and x + h.
We could compute this area by finding the area between 0 and x+h, then subtracting the
area between 0 and x. In other words, this area would be A(x + h) −A(x).
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Similar to the example at the beginning of this chapter, we can use the rectangular
area, given by the product of h and f(x), to approximate this area. Intuitively, the
approximation will become very good as h becomes smaller.

At this point we know that A(x + h) − A(x) is approximately equal to f(x) ⋅ h, and
we intuitively understand that this approximation becomes better as h grows smaller. In
other words, f(x) ⋅h ≈ A(x+h)−A(x), with this approximation becoming an equality as
h approaches 0.

Divide both sides of this equation by h. Then we have

f(x) ≈ A(x + h) −A(x)
h

.

As h approaches 0, the right hand side of this equation is simply the derivative A(x) of
the area function A(x). The left-hand side of the equation simply remains f(x), since no
h is present.

We have shown informally that f(x) = A′(x). In other words, the derivative of the
area function A(x) is the original function f(x). Or, to put it another way, the area
function is simply the antiderivative of the original function.

What we have shown is that, intuitively, computing the derivative of a function and
finding the area under its curve are ”opposite” operations. This is the crux of the Fun-
damental Theorem of Calculus.

6.2.2 First Fundamental Theorem of Calculus

Let f be a continuous real-valued function defined on a closed interval [a, b]. Let F be
the function defined, for all x in [a, b], by

F (x) = ∫
x

a
f(t)dt.

Then, F is continuous on [a, b], differentiable on the open interval (a, b), and

F ′(x) = f(x)

for all x in (a, b).
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6.2.3 Second Fundamental Theorem of Calculus

Let f be a real-valued function defined on a closed interval [a, b] that admits an an-
tiderivative g on [a, b]. That is, f and g are functions such that for all x in [a, b],

f(x) = g′(x).

If f is integrable on [a, b] then

∫
b

a
f(x)dx = g(b) − g(a).

Note that when an antiderivative g exists, then there are infinitely many antiderivatives
for f , obtained by adding to g an arbitrary constant. Also, by the first part of the theorem,
antiderivatives of f always exist when f is continuous.

An important note: You should consult with your calculus textbook for
rigorous proof for these theorems!!

6.3 Physics intuition

The velocity of a particle is defined as the derivative of the displacement with respect to
time.

v(x) = dx

dt
Rearranging this equation, it follows that:

dx = v(t)dt.

By the logic above, a change in x (or ∆x) is the sum of the infinitesimal changes dx. It
is also equal to the sum of the infinitesimal products of the derivative and time. This
infinite summation is integration; hence, the integration operation allows the recovery of
the original function from its derivative. As one can reasonably infer, this operation works
in reverse as we can differentiate the result of our integral to recover the original.

6.3.1 Antiderivatives

In contrast to a definite integral specified by given upper and lower bounds, indefinite
integral is the process of finding the set of all antiderivative of f(x).

∫ f(x)dx = F (x) +C,

where

F ′(x) = d

dx
F (x) = f(x).

The expression F (x) +C is the general antiderivative of f .
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Here are some useful theorems that you can easily prove.

• ∫ dx = x + c

• If n is a real number,

∫ xn dx = {
xn+1

n+1 +C if n ≠ −1,
ln ∣x∣ +C if n = −1.

• The general antiderivative of a function multiplied by a constant is the constant
multiplied by the general antiderivative of the function.

∫ af(x)dx = a∫ f(x)dx

• If f and g are defined on the same interval, then:

∫ [f(x) ± g(x)]dx = ∫ f(x)dx ± ∫ g(x)dx

• If f1, f2,⋯, fn are defined on the same interval,

∫ [c1f1(x) + c2fx(x) +⋯ + cnfn(x)] dx

= c1∫ f1(x)dx + c2∫ f2(x)dx +⋯ + cn∫ fn(x)dx,

where c1, c2,⋯, cn are constants.

Some other useful formulas, where a is a constant:

• ∫ sin(au)du = −1
a
cos(au) +C

• ∫ cos(au)du = 1

a
sin(au) +C

• ∫ exp(au)du = 1

a
exp(au) +C

6.4 Exercises

Evaluate.

1. ∫ (3x4 + 2x3 − x)dx

2. ∫
1

0
(2x − 1)(5x + 1)dx
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3. ∫
π

0
sinnxdx, where n is a constant.

4. ∫
π

0
cosxdx

5. ∫
100

−100
(3x5 + 2x3 − x)dx



Chapter 7

Useful tools

7.1 GNUPLOT

Gnuplot is a powerful freely distributed software for data and function plotting. Here
is the homepage of GNUPLOT, [ http://www.gnuplot.info/ ]. It was originally in-
tended as to allow scientists and students to visualize mathematical functions and data.
GNUPLOT supports many types of plots in either 2D or 3D. It can draw using lines,
points, boxes, contours, vector fields, surfaces, and various associated text. It also sup-
ports various specialized plot types. GNUPLOT supports many different types of output,
including interactive screen terminals and output to many file formats (eps, fig, jpeg,
LaTeX, metafont, pbm, pdf, png, postscript, svg, ...). The software has been supported
and under development since 1986.

First, we suggest you to go to the demos section and see what the software can
do for you. In addition, you can find a brief manual and tutorial at this web site, [
http://www.duke.edu/∼hpgavin/gnuplot.html ]. Written in a very simple way that
is very easy to follow, it begins with how to install and to start GNUPLOT on your
computer.

You should install the software at your own computer. It is very simple. Go to the
download section and get the current gnuplot version from the primary download site
on SourceForge. Download and unzip the binary package, then you can use one of the
executable files in the binary directory. In addition, familiarize yourself with the software.
At least, you should learn how to make 2D and 3D plots for some elementary functions
and polynomial functions. This is a very useful tool for your future study in mathematics
and physics. We encourage you to explore more the capabilities of GNUPLOT.
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7.1.1 Exercises

1. Generate a plot of the function sin(x).
2. Generate a plot of a polynomial of your choice.

3. Generate a plot of the function f(x) = sin(exp(x)) for x ∈ [0,5]. Make sure that you
use enough points to show all oscillations of the function in the range.

4. Can you output the plot to a file?

7.2 Wolfram∣Alpha

Wolfram∣Alpha is a web resource built by Wolfram Research Company, the producer of the
powerful mathematical software, Mathematica. Here is the homepage of Wolfram∣Alpha
[ http://www.wolframalpha.com/].

Wolfram∣Alpha aims to ”bring expert-level knowledge and capabilities to the broadest
possible range of people - spanning all professions and education levels”. It integrates
several online resources also previously produced by Wolfram Research, including the
Wolfram Demonstrations Project [ http://demonstrations.wolfram.com/ ] and the
Online Integrator [ http://integrals.wolfram.com/ ]. Unlike the two precursors requir-
ing a special syntax as used in Mathematica, Wolfram∣Alpha accepts free-form inputs.
It serves as a knowledge engine, similar to how Wikipedia works, but more interactive
in providing visual demonstrations. We suggest you to explore the examples by topic
section and learn how to use this powerful tool.

7.2.1 Exercises

1. Input exp and see what you get. You will get information about exponential function
ex. Try to change the range of the plots for the function.

2. Input projectile motion and see what you get. Change the initial speed and the
release angle for the trajectory.

3. Input integrate sin(x).

4. Input integrate sin(x**2) and see what you get.

5. Try to find the root of x − cos(x) = 0.
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